Fuzzy Clustering of Students' Data Repository for At-Risks Students Identification and Monitoring
نویسندگان
چکیده
In educational data mining, identifying academic courses that contribute significantly to students’ class of degree and predicting students’ performances can help in the choice and improvement of intervention and support services for students whose performances are poor. Experience shows that graduates with weak class of degree find it difficult to gain employment, hence, the need to identify and group these at-risk students at an early stage of their academic career and then develop a plan to improve their performance. This paper identifies possible academic courses with significant contribution to academic performance and predicts students’ graduating class of degree. 11Ants Model Builder provided a means for course rank analysis while MATLAB was the system development tool. Fuzzy c-Means (FCM) algorithm was used to partition students into weak, average and good clusters. Four (4) natural clusters of at-risk students were automatically identified with k-means algorithm. Results show that Sugeno-type inference system is best suitable for the provision of initial parameters for Adaptive Neuro Fuzzy Inference System (ANFIS) training of students’ dataset. The results also prove the effectiveness of the combination of FCM, k-means and ANFIS in the classification of students based on academic performance and at-risk levels. The results will help educational managers monitor groups of students at the same level of performance, and those at the boundary of two classes of degree for the provision of informed counseling and intervention plans, to improve academic performance.
منابع مشابه
Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملتمایز دانشجویان دارای اهمالکاری تحصیلی و دانشجویان عادی بر اساس اعتیاد به اینترنت
Background and Objective: Computer and internet tools are necessary to facilitate the living of people today that had created risks. One of these risks can develop in the students' educational procrastination. This study aimed to discriminate normal students from those with educational procrastination based on internet addiction. Materials and Methods: The research method of this study was c...
متن کاملProviding a Method to Identify Malicious Users in Electronic Banking System Using Fuzzy Clustering Techniques
Money-Laundering causes a higher prevalence of crime and reduces the desire tending to invest in productive activities. Also, it leads to weaken the integrity of financial markets and decrease government control over economic policy. Banks are able to prevent theft, fraud, money laundering conducted by customers through identification of their clients’ behavioral characteristics. This leads to ...
متن کاملA Novel Scheme for Information Retrieval from E-learning Repository
The repository of any learning management system (LMS) keeps growing and becomes a rich source of learning materials with the passage of time. This learning resource may serve subject experts by allowing them to reuse the existing material while preparing online instructional materials. At the same time it may help the learners by allowing them to retrieve the relevant documents for efficiently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer and Information Science
دوره 6 شماره
صفحات -
تاریخ انتشار 2013